E-ISSN: 2278-179X

JECET; March - May 2013; Vol.2.No.2, 364-369.
Journal of Environmental Science, Computer Science and
Engineering & Technology

An International Peer Review E-3 Journal of Sciences and Technology

Available online at www.jecet.org

Computer Scence

Research Article

Reverse Engineering of Software and Types Hazards

LalitaM .Lokhande* and N.V. Kalyankar

Department of Computer Science, Yeshwant MahavayyalNanded,-431601 (MH) India

Received: 11 April 2013 Revised: 02 May 2013Accepted: 6 May 2013

Abstract: The paper based on various hazards based on eeperiof reverse
engineering programs. Reverse engineering procesassused as part of a software
development, an implementation of a better programd upgrade the existing
documentation. The development, design informati@s extracted from the source
codes and entered into a software development amwignt. The valuated design
information was used to implement a new versiontted software program. The
experiments carried out by recovering the infororatand it will implemented, dealing
with some incomplete part of information and reeersngineering. The reverse
engineering process used to recover the desigardsand the experience gained during
the study are reported.

Keywords: Hazards, Reverse engineering, forward engineering.

INTRODUCTION

The implementation of experiment derived from agkarproblem or multiple problems given an existing
software system. How you can improve your system bhow it can be developed? The problem of
reimplmenting an existing programme system in &déht programming language has been around for
last 20 years it is based on: a) manually rewheegrogramme for software’s, b) Use a differenglaage
translator, c) Redesign and reimplement the soéangrammg®.

Another reason for reverse engineering is to cosgpneroduct development times. In the intensely
competitive global market, manufacturers are canistgeeking new ways to shorten lead-times to etark

a new product. Rapid product development referedently developed technologies and techniques that
assist manufacturers and designers in meetingeimauads of reduced product development time. Bygusin

JECET; March- May 2013; Vol.2.No.2, 364-369 364

Rever=e.... LalitaM Lokhande and N.V.Kalyankar.

reverse engineering, model can be quickly captimedigital form, re-modeled and exported for rapid
prototyping/tooling or manufacturing.

Abstraction

Design

v

Old implementation recovered design new Implementation

I mplementation U

Re-implementation

Fig.1: Software Reverses Engineering

REVERSE ENGINEERING

Reason for reverse engineering is to compress ptathvelopment times. In the intensely competitive
global market, manufacturers are constantly seekmg ways to shorten lead-times to market a new
product. Rapid product development refers to régeatdveloped technologies and techniques thattassis
manufacturers and designers in meeting the demahdsduced product development time. By using

reverse engineering, model can be quickly captumedigital form, re-modeled and exported for rapid

prototyping/tooling or manufacturifig

Some important reasons are part or product for reverse engineering: a) The manufacturer of an original
product is a no longer produces a product. b) difiginal design is inadequate documentation. c) The
original manufacturer no longer exists, but a cm&ioneeds the origin of product. d) The originadige
documentation has been lose or never existed.rag $ad features of a product needed to be redesigne
f) To strengthen the good features of a produsethan long-term usage of product. g) To analyee th
good and bad features of competitors product. texplore new avenues to improve product performanc
and features. i) To gain competitive benchmarkingthods to understand competitor's products and
develop better products. J) The original model @¢ sufficient to support modifications or current
manufacturing methods. k) The original supplieafgble or unwilling to provide additional partsThe
original equipment manufacturers are either unmgllor unable to supply replacement parts or demand
inflated costs for sole-source parts. m) To updatolete materials or antiquated manufacturinggsees
with more current, less-expensive technologits

Reverse engineering enables the duplication ofxistieg part by capturing the component's physical
dimensions, features and material properties. Befdtempting reverse engineering a well-planned [if
cycle analysis and cost/benefit analysis shoulddrelucted to justify the reverse engineering ptejec
Reverse engineering is typically cost effectiveyoaifilthe items to be reverse engineered reflectgh h
investment or will be reproduced in large quartitiReverse engineering of a part may be attempted e
if it is not cost effective, if the part is absallyt required and is mission-critical to a systemcdfmmon
misperception regarding reverse engineering isithatused for the sake of stealing or copying sone
else's work. Reverse engineering is not only usdifjtire out how something works, but also the wiays
which it does not worR ™

Examples of the different uses of reverse engineering include: (a) Understanding how a product works
more comprehensively than by merely observing)itnkiestigating and correcting errors and limitatio

in existing programs. c¢) Studying the design pphes of a product as part of an education in ergging.

d) Making products and systems compatible so tlagyveork together or share data. €) Evaluatingsone'
own product to understand its limitations. f) Dataring whether someone else has literally copied
elements of one's own technology. g) Creating desuation for the operation of a product whose

JECET; March- May 2013; Vol.2.No.2, 364-369 365

Rever=e.... LalitaM Lokhande and N.V.Kalyankar.

manufacturer is unresponsive to customer servigeests. h) Transforming obsolete products intoulsef
ones by adapting them to new systems and platfommghe context of software engineering, the term
reverse engineering was defined and the procearalfzing a subject system to (i) identify the eyst
components and their inter-relationships and (ggte representations of the system in another torat

a higher level of abstraction. Thus, the core otrse engineering consists in deriving informatiaom
the available software artifacts and translatinigptib abstract representations more easily undetatzde

by humang>*®

Examples of problem areas where reverse engineering of software has been successfully applied they

are: (a)Re-documenting programs and relational databagddehtifying reusable assets. c) Recovering
architectures of programmer. d) Recovering desaftems of data. e) Building traceability betweetad
code and documentation’s. f) Identifying clongsCgde smells and aspects of data. h) Computinggeha
impacts. i) Reverse engineering primary and birages. j) Renewing user interfaces. k) Translasing
program from one language to different languageMifyrating or wrapping legacy code of software.
Although software reverse engineering originatedsaftware maintenance, its definition is sufficlgnt
broad so as to be applicable to many problem afeagxample to create representations necessary fo
testing purposes or to audit security and vulndéitabi

The practice of reverse engineering is widespréadughout the software industry. However, reverse
engineering is also associated with hackers arekera. The various computer law breakers as a nteans
subvert security steal secrets and destroy dataw&e companies fear (and rightly so) that theadé
secret algorithms. The methods will be more diyentlvealed through reverse engineering than they ar
through external machine observation. However, ethier no general-purpose law against reverse
engineering. Because reverse engineering is aatrsi&p in removing copy protection schemes, tiere
some confusion regarding its legality. The objextdf the process of software reverses engineedng t
improve the maintainability of a software systermrhaff you have read this chapter, you will: i) unthard
why re-engineering is sometimes a cost-effectivioofor software system evolution, ii) understahd
activities such as reverse engineering and progeatnucturing which may be involved in the software
reverse engineering process and iii) understand differences between software and data reverse
engineering and understand why data reverse enigiges an expensive and time consuming prote¥s.

Design &

> [Newsystem}
implementation

System specifications >

Forward engineering

Existing software Understanding & Reverse engineerin
. —
system retransformation of system

Software Reverse Engineering

Fig. 2: Implementation of forward and softwar e rever se engineering

Software systems which are essential for businesseps support. Companies rely on these systems so
they must keep them in operation. Software evalustrategies include maintenance, replacement and
architectural evolution of software reverse engimee Software reverse engineering is concernetl vei
implementing legacy systems to make them more aimble. Reverse engineering may involve re-
documenting the system, organizing and restruajufie system, translating the system to a more mode
programming language and modifying and updatingdtinecture and values of the system’s data. The
functionality of the software is not changed andnmally, the system architecture also remains tmeesa
From a technical perspective, software reverseneeging may appear to be a second-class solutithreto

JECET; March- May 2013; Vol.2.No.2, 364-369 366

Rever=e.... LalitaM Lokhande and N.V.Kalyankar.

problems of system evolution. There are so manyeBys in existence that complete replacement or
radical restructuring is financially unthinkable foost organizations. Reverse engineering a systeost
effective when it has a high business value bakjgensive to maintain. Reverse engineering imprives
system structure, creates new system documentatidrmakes it easier to understand. Re-engineering a
software system has two key advantages over mdieataapproaches to system evoluti®educed risk
there is a high risk in re-developing software tisa¢ssential for an organization. Errors may beéeria

the system specification; there may be developipesiilems, etc. for exampl&educed cost: The cost of
reverse engineering is significantly less thandbsts of developing new software. A commercial eyst
where the re-implementation costs were estimatem@tiakh rupees. The system was successfullysever
engineered for twenty thousand rupees only. Ifaghfggures are typical, it is about 4 times cheaper
reverse engineer than to re-wtite

Fig.3.The input to the process is a legacy program haduttput is a structured, modularized version of
the same program. At the same time as programgiexegering, the data for the system may also baseve
engineered. The activities in this reverse enginggrocess are: &ource code trandation: The program

is converted from an old programming language tose modern version of the same language or to a
different language. blReverse engineering: The program is analyzed and information extractednfit
which helps to document its organization and fumglity. c) Program structure improvement: The
control structure of the program is analyzed andlifredd to make it easier to read and understand. d)
Program modularization: Related parts of the program are grouped togethds @where appropriate,
redundancy is removed. In some cases, this stagenwalve architectural transformation as discuss3d
Data re-engineering: The data processed by the program is changedi¢etr&rogram changes.

Original Program Modularized
program documentation program

/ [Rever se engineering 1

Sour ce code
trandation
N
Program structure Program Datareverse
improvement modularization engineering
engineering)
v
Structured | | Reverseengineering
program of data
J

Fig.3: lllustrates a possible rever se engineering process.

The main disadvantage of software reverse engimgithat there are practical limits to the extéiat a
system can be improved by reverse engineeringnit possible, for example, to convert a systenitemi
using a functional approach to an object-orientgstesn. Major architectural changes or radical re-
organizing of the system data management cannoafed out automatically so involve high additibna
costs. Although reverse engineering can improventamiability, the reverse engineered system will
probably not be as maintainable as a new systeral@j@sd using modern software reserve engineering
methods. We are work on the reverse engineerimggabfsis software.

JECET; March- May 2013; Vol.2.No.2, 364-369 367

Rever=e.... LalitaM Lokhande and N.V.Kalyankar.

VARIOUSTYPES OF HAZARDS OF SOFTWARE

The Software Hazard Analysis provides a detaileghithevaluation of the system’s software. Firmware
identify, determine software contributions to systeafety analysis tools tend to be divided intoudtisle
methods and inductive methods. Hazard analysepeaifermed to identify hazards, effects hazard and
causal factors hazards. Hazard analyses are usddtéomine system risk and thereby ascertain the
significance of hazards so that safety design mieascan be established to eliminate or mitigate the
hazard.

Analyses will be performed to systematically exaatiion of the system, subsystem, facility, composent
and their interrelationships. There will be two eggiries of hazard analyses tgpes and techniques.
Hazard analysis type defines an analysis categeansidesign and technique defines a unique analysis
methodology called fault tree analysis. The typat#shes analysis timing, depth of detail, andeays
coverage. In general, there are several differectirtiques available for achieving each of the wario
types. a)Conceptual design hazard analysis type (CDHAT); b) Preliminary design hazard analyss type
(PDHAT); c) Detailed design hazard analysis type (DD-HAT); d) System design hazard analysis type (SD-

HAT); e) Operations design hazard analysis type (ODHAT); f) Health design hazard analysis type (HD-

HAT) and g)Requirements design hazard analysis type.

Hazard analysis type describes the scope, covardgaded to provide a time- or phase-dependent
analysis that readily identifies hazards for aipakir design phase in the system developmentiitde.
Since design that is more detailed and operatiéornmation is available as the development program
progresses, so in turn more detailed informatioavigilable for a particular type of hazard analy$ise
depth of detail for the analysis type increaseghaslevel of design detail progresses. Each ofethes
analysis types defines a point in time when thdyaisashould begin, the level of detail of the gsdd, the
type of information available, and the analysispaoitit The goals of each analysis type can be aathibye
various analysis techniques.

The analyst needs to carefully select the apprteptéchniques to achieve the goals of each ofriabysis
types. An important principle about hazard analysithat one particular hazard analysis type da#s n
necessarily identify all the hazards within a systédentification of hazards may take more than one
analysis type (hence the seven types). A coroliarthis principle is that one particular hazardlgsia
type does not necessarily identify all of the hdzeausal factors; more than one analysis type neay b
required. After performing all seven of the hazardlysis types, all hazards and causal factorslghou
have been identified; however, additional hazardyg bre discovered during the test program.

CONCLUSION

Reverse engineering improves the system struattgaies new system documentation and makes itreasie
to understand. Reverse engineering a softwaremyistes advantages over more radical approaches to
system evolution. The main disadvantage of softwaverse engineering is that there are practigatdi

to the extent that a system can be improved byrsevengineering. A hazard analysis type defines the
analysis purpose, timing, scope, level of detail system coverage; it does not specify how to perfihe
analysis.

A hazard analysis technique defines a specific amdue analysis methodology that provides a specifi
methodology and results. There are seven hazarysedypes in the system safety discipline that,
together help ensure identification and resolubbsystem hazards. There are over 100 differeniysisa
techniques that can be used to satisfy the analygé requirements and one particular hazard aisalys
type does not necessarily identify all the hazavitkin a system; it may take more than one type and
usually all seven types.

JECET; March- May 2013; Vol.2.No.2, 364-369 368

Rever=e.... LalitaM Lokhande and N.V.Kalyankar.

ACKNOWLEDGMENT

Authors thank to UGC- Rajiv Gandhi National Felltigs for providing funds, e-consultancy of
software’s, and Gargik technologies, Mumbai forylng necessary facilities for research work.

REFERENCES

1. R. A. Converse and M. J. Bassman, Avionics Paneh@®gium: Software Engineering and Its
Application to Avionics, AGARD-NATO, Cesme Turke}988, paper 8.

2. P.LClemens and W.T.Warner, A Perspective on SySafaty Hazard Prevention® Edn.1995.

3. C.AEricson, Hazard Analysis Techniques for Sys&afety, John Wiley & Sons, 2005.

4. B.E.Goldberg, System Engineering Toolbox for Desiyiented Engineers,” NASA Reference
Publication 1358, December 1994.

5. V. Popovic,, B. Vasic and D.Curovic, Failure modeffects and risks analysis — FMERA, Journal
of Institute for Research and Design in Commerdadustry,2008, 6(20) ,33-42.

6. J. Todorovic,: Maintenance Engineering of Techn®gdtems, Institute for Research and Design in
Commerce & Industry and Faculty of Mechanical Eegiting, Belgrade, 2006..

7. M.Rausand and A.Hgyland, System Reliability Theeiodels, Statistical Methods and

a. Applications, John Wiley & Sons, New Jersey, 2004.

8. V. Narayan, Effective Maintenance Management: Riek Reliability Strategies for Optimizing
Performance, Industrial Press, New York, 2004.

9. V. Popovic, B. Vasic and N.Stanojevic, Contributitm development of new failure analysis
methods, in: Proceedings of the 3rd World Congoédgaintenance, 2006, pp. 155-160.

10. S. Freiberger*, M. Albrecht and J. Kaufl, Reversgyiieering Technologies for Remanufacturing
of Automotive Systems Communicating via CAN Bugyrdal of remanufacturing 2011, 1:6

11. M.-A. D. Storey, F. D. Fracchia, and H. A. MulleCognitive design elements to support the
construction of a mental model during software esgiion. J. Syst.Softw., 1999, 44(3):171-185.

12. Richard Wettel and Michele Lanza. Visualizing s@ftes systems as cities. Visualizing Software for
Understanding and Analysis, International Workshop2 007, 0:92—-99,

13. R. Keller, R. Shauer, S. Robitaille, and P. Padfatternbased reverse-engineering of design
components. In Proc. of the 21st International €wmice on Software Engineering, IEEE
Computer Society Press, May 1999 pages 226—-235.

14. P.Mendes, W .Sha, Ye K. Artificial gene networks dbjective comparison of analysis algorithm.
Bioinformatics 2003; 2(19Suppl):11122.

15. Salgado H, et al. RegulonDB (version 4.0): traqdiynal regulation, operand organization and
growth conditions in Escherichia coli K-12. Nuclids Res 2004; 32:D303.

16. M. Aluru, J. Zola, D.Nettleton and S. Aluru, Rewemngineering and analysis of large genome-
scale gene networkBlucleic Acids Research Advance Access 2012, 1-13.

17. T. Schaffter, D.Marbach and D.Floreano, GeneNetWeawm silico benchmark generation and
performance profiling of network inference methdBiminformatics, 2011, 27, 2263-2270.

18. R.Nayak, M.Kearns and R.Spielman, Coexpression arétWwased on natural variation in human
gene expression reveals gene interactions andidasciGenome Res., 2009, 19, 1953-1962.

19. L.Mao, J. van Hemert, S. Dash and J. Dickersonbifiapsis gene co-expression network and its
functional modules. BMC Bioinformatics, 2009, 1@63

*Correspondence Author: Lalita M .Lokhande; Department of Computer Science, Yeshwant
Mahavidyalaya, Nanded-431601(India) Email: lalita@rediffmail.com

JECET; March- May 2013; Vol.2.No.2, 364-369 369

