JECET, September 2013 —November-2013; Vol.2.No.4047-1018.

Journal of Environmental Science, Computer Science and
Engineering & Technology

An International Peer Review E-3 Journal of Scienceand Technology

Available online at www.jecet.org

Engineering & Technology

Research Article

Horizontal Aggregation with secondary indexes to
prepare datasets from databases

Arla.Sravanthi ' and Rambabu Pemula®
Nimra Institute of Engineering & Technology, Ongofndhra Pradesh, India.

Received:6 September 201 Revised: 18 September 2013 ccepted:21 Septmber2013

Abstract: Internet search engines have popularized the keianmaised mostly

search paradigm. Whereas ancient management syspeavide powerful

guestion languages, they are doing not enable kelf@sed search. During this
paper, we tend to discuss Hierarchical Indexerystesn that permits keyword-
based mostly search in relative databases. Higcatdndexer has been enforced
employing an industrial on-line database and neteseand permits users to act
via a browser front-end. We tend to define the lelhges and discuss the
implementation of our system as well as resulisteihsive experimental analysis.

Keywords: Aggregation, data preparation, pivoting, SQL exitg

INTRODUCTION

Internet search engines have popularized keywaadedh mostly search. Users submit keywords to
the computer program and a hierarchical list ofutleents is come to the user. Another to keyword
search is structured search wherever users dhireiit gearch by browsing classification hierarchies.
Each model is hugely valuable - success of eaclvdely search and therefore the classification
hierarchy is evident these days.

A significant quantity of the world’s enterprisedwledge resides in relative databases. It's vitat t
users be able to seamlessly search and browseke®fo in these databases likewise. looking out

JECET, September 2013 —November-2013; Vol.2.No.40a7-1018. 1007

Horizontal... Sravanthi and Pemula

databases on internet the net} and computer nettiie@de days is primarily enabled by custom-made
web applications closely tied to the schema ofuhderlying databases, permitting users to direct
searches in a very structured manner.

While such structured searches over databaseotiesy doubt helpful, in contrast to the documents
world, there's very little support for keyword sgaover databases. Yet, such a quest model may be
extraordinarily powerful. As an example, we tendmaght wish to search the Microsoft computer
network on ‘Jim Gray’ to get matched rows, i.ewsowithin the information wherever ‘Jim Gray’
occur. Note that such matched rows could also beddn additional than one table, maybe even
from completely different databases (e.g., addbesk and mailing lists). Our goal is to alter such
searches while not essentially requiring the udersunderstand the schema of the individual
databases. Yet, today’s tailor-made internet apfitins as delineated on top of an ancient SQL
applications need information of the schema.

Enabling keyword search in databases that doesed imformation of the schema may be a difficult
task. Note that one cannot apply techniques froendicuments world to databases during an easy
manner. As an example, because of information atalimhtion, logical units of data could also be
fragmented and scattered across many physicalstaBigen a collection of keywords, an identical
row may have to be obtained by change of integnany tables on the fly. Secondly, the physical
information style (e.g., the supply of indexes amerous information columns) has to be leveraged
for building compact knowledge structures vital feconomical keyword search over relative
databases. During this paper we tend to descrilerakthical Indexer, Associate in Nursing
economical and climbable keyword search utility fedative databases. The task of building
Hierarchical Indexer offers rise to many analysisries that we tend to address during this paper.

Alternatives in index table Design: ancient inftrieval techniques for acceptable keyword search in
document collections use information structure® likverted lists that expeditiously establish
documents containing a question keyword. A simpégppmng of this concept to databases may be a
index table that stores info at row level graingés., for every keyword we tend to keep thedist
rows that contains the keyword. Different indexeadtyles are doable wherever we will leverage the
physical style of the info. For instance, if a aoluhas Associate in Nursing index then we tend to
solely want column level graininess, i.e., for gvé&eyword, we tend to solely store the list of
columns wherever they occur. The on top of approaai end up in immensely reduced area demand
and improved search performance. During this papertend to study the trade-offs among these
varied alternatives.

Symbol Table Compaction: we tend to introduce a mletely unique technique that leverages
commonality of keywords among info columns to coegsindex tables. This system is employed in
conjunction with hashing and different famous coesgion techniques.

Efficient Search across Multiple Tables: typicalige results of a question are matching rows that
span multiple tables. The rows have to be compedtidse generated by change of integrity tables on
the fly by exploiting the schema also as conterthefdatabase.

Efficient Generalized Matches exploitation SQL: erassociate degree attribute worth could be a
string containing multiple keywords, retrieving r®wherever a keyword matches a substring (e.g.,
LIKE “%kwd%”") cannot exploit associate degree indgeration on the attribute. In such cases, full
text search practicality is important for potentye tend to show a completely unique various for
doing such matches exploitation SQL. We tend tdaggghe relevancy and limitations of our theme.

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018. 1008

Horizontal... Sravanthi and Pemula

Hierarchicallndexer supports conjunctive keyword queries, i.e., retaieof solely documents that
contain all question keywords. This is, in fact fbremost wide used paradigm for net search.

We have enforcedflierarchical Indexer exploitation commercially accessible Microsoft SQer&er
2000 information server and Microsoft IIS net serfiecommunicates with databases exploitation the
guality ODBC interface, and therefore is often supgd over just about any electronic database. Our
style ensured thdtlierarchical Indexer leverages the practicality of the relative engafiectively.
Hierarchical Indexer is presently deployed on our company computer otvand a number of other
databases are enabled for keyword search expwitttis tool.

The rest of this paper is organized as followsSkttion three, we tend to expel a summary of
Hierarchical Indexer. Sections four and five describe the preprocesgargy chargeable for making
the index table. Section six describes the search part that anskegssord searches once thelex
table has been engineered. Section seven discussessiextenmequired for generalized keyword
matches represented higher than. Section eightemieesexperiments that demonstrate the
effectiveness of our answer.

RELATED WORK

Keyword-based search may be a well studied downsithin the world of text documents and web
search engines. Inverted lists area unit commorwlguge structures used for finding keyword
queries?**3 A stimulating post search activity is that thekiag of result$®. Our work differs from
canonical use of inverted lists as a result of vemtwio come up with hits among a info that span
multiple tables, as materializing all table joinelacommercial enterprise every as a document (and
employing a text search engine) isn't a ascendibdsver. This has ramifications for index tableestyl
as are mentioned in Section 4.The approatladiiresses the matter of keyword search over XML
documents. It parses XML documents to come up witth cargo inverted file info (i.e., a map of
values to individual rows) into a computer datab&er style provides another wherever index tables
map keywords to columns that have offered indeXég add addresses the matter of proximity
search over semi-structured stores. In distinctoam, core focus is on finding actual matches in an
exceedingly multi-relation info that contains adliykvords per the question, requiring United States t
check style alternatives for index tables yet ovetlgp techniques for be a part of tree enumeration.

The Telegraph FFF engine searches for facts andeigirom chosen sites on the web, and permits
them to be combined and analyzed in advanced wawsict. Since our work permits websites to
reveal their tabular info for sanctionative keywaehrch, the FFF search mechanism at the websites
that has facts and figures could also be increbgétierarchicallndexer technology.

The search part dflierarchicalindexer bears alikeness to figure on universal relafionderever a
info is viewed as one universal relation for quegyfunctions, therefore concealment the quality of
schema standardization. The challenge within thigeusal relation approach is to map a variety
guestion over the universal relevancy a SQL questier the normalized schema. Though bound
aspects of our search algorithmic rule (such aa part of trees, see Section half-dozen.1) arga uni
almost like universal relations ideas (such as wmdunctions, s€e a very important distinction is
that keyword searches ought to modify the extrdityuidat the names of columns within the choice
conditions aren't best-known. DataSfanay be a business system that supports keywortibas
searches by extracting the content of the info atioyper base. Thus, this approach duplicates the
content of the info that makes knowledge integatyd maintenance tough. Microsoft's English
question® provides a linguistic communication interface tQLSinfo. However, in contrast to the

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018. 1009

Horizontal... Sravanthi and Pemula

keyword-based approach, it “guesses” one SQL sttethat most closely fits a question expressed
in an exceedingly linguistic communication.

Most major business info vendors permit a full tesagrami®*® to be invoked whereas process SQL
(that is extended by specialized predicates). Hewesuch engines cannot by themselves establish
matching rows that result from connection multikdep tables’ on-the-fly (see Section 6).

OVERVIEW OF HIERARCHICALINDEXER

Given a group of question keyworddierarchicallndexer returns all rows (either from single tables,
or by change of integrity tables connected by fygréiey joins) such the every row contains all
keywords. Such keyword search needs (a) a premiogestep known as Publish that allows
databases for keyword search by building ithdex table and associated structures, and (b) a quest
step that gets matching rows from the printed degeb. Though for lack of area, we tend to discuss
solely the case wherever there's one informatiom,techniques be keyword search over multiple
databases.

Overview of Publish and Search StepsPublish: An info (or a desired a part of it) is blea for
keyword search through the subsequent steps.

Step 1: A info is known, beside the set of tables and wis at intervals the info to be printed. Step
2: Auxiliary tables are created for supporting keysvsearches. The foremost vital structure could be
an index table S that's used at search time to with efficiencyficm the locations of question
keywords within the info (i.e., the tables, columrevs they occur in).

Search: Given a question consisting of a colleabibkeywords, it's answered as follows.

Step 1: Theindex table is researched to spot the tables, and columns/obive info that contain the
guestion keywords.

Step 2: All potential subsets of tables within the infaathif joined, would possibly contain rows
having all keywords, are known and enumerated. thoE¢ables are often joined given that they're
connected within the schema, i.e., there's a fé-talled a be a part of tree) within the schema
graph that contains these tables as nodes (anahpab$/ some intermediate nodes).

Step 3: for every enumerated be a part of tree, a SQles@nt is made (and executed) that joins the
tables within the tree and selects those rowsdtiatain all keywords. The ultimate rows are graded
and conferred to the usér the most Publish and Search elements are pragedkas 2 separate
COM (Component Object Mod®8l objects. The publish element provides interfaceg@} choose a
info, (b) choose tables/columns at intervals tHe to publish, and (c) modify/remove/maintain the
publication. For a given set of keywords, the deagement provides interfaces to (1) retrieve
matching databases from a collection of printedaldages, and (2) by selection determine tables,
columns/rows that required being searched at iatemfo known in step (1). the particular integac
for the latter embrace (i) for a given set of keyag realize all the matching tables/columns féii)a
given set of keywords, realize all rows within th# that contain all of the keywords.

Packaging these parts as COM objects permits theome employed in a range of applications. This
model permits use of a customary applications @mgner to publish any information at an internet
server. Similarly, for search, the user connectag¢ssearch ASP employing a browser and problems a
keyword-based question to induce matching rows.skiséem conjointly permits one to look multiple
databases at the same time. (See the appendisrémnshots of the system.)

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018.

Horizontal... Sravanthi and Pemula

Design Alternatives for Symbol Table:Hierarchical Indexer has been deployed on realbdatzs
from. In this section we tend texpel and analyze completely different the computer netwat
intervals Microsoft. For its implementation, we deto index table styles. We tend to solely take into
account the precise match leverage IIS internetesend Active Server Pages (ASP) problem; i.e.,
wherever every keyword within the question shoutgatch the worth of associate degree attribute in
a very row of a table. We tend to defer handlingaditional generalized matches to Section seven.
Theindex table is that the key system won't to hunt the variaeations of question keywords within
the information. A very important style thoughtdsciding the placement roughness i.e., for a given
keyword, what info has to be hold on within timelex table to spot the placement of the keyword
within the information. the 2 fascinating roughnésgels are: (a) column level roughnéBsrtial-
index), wherever for each keyword the index table maistaive list of all information columns (i.e.,
list of table. column) that contain it, and (b)ldelel roughnes¢Partial-index), wherever for each
keyword thendex table maintains the list of information cells that canti.

Some selections of the roughness levels arenk gsifascinating. for instance, our experiment® hav
shown that row level roughneBslex tables (that maintain list of rows that contain a keywoha@ve
very little advantage over cell level roughness@such because the size of the index table worries
nevertheless bound functionalities (e.g., to “unbissh a column, i.e., to prevent creating the goiu
offered for keyword search) are tougher to impleth@na result of column info is absent. There are
many factors that influence the suitable roughfess to adopt: (a) area and time needs for bugdin
the index table, (b) result on keyword search perémce, and (c) simple index table maintenance.
We tend to discuss these factors next.

Space and Time Requirements:The index table size may be a crucial think aboggtesn
performance; larger index tables increase I/O pribeoughout search. Partial-index index tables are
typically a lot of smaller than Tables. This isesftas a result of not like the latter, if a keyword
happens multiple times during a column (correspamdd totally different rows), no additional data
must be recorded in Partial-index. Our experimamtstake a look at databases show orders of
magnitude variations between the 2 index tablessizbe time to create Partial-index index table is
additionally correspondingly less, since not likertRal-index we tend to solely got to record the
distinct values during a column.

Keyword Search Performance:As are mentioned in Section vi, every keyword deajuestion
leads to a collection of SQL statements, that argathen dead to retrieve matching rows. Search
performance depends on the economical generatidmemsnltant execution of those SQL statements.
SQL generation needs that the tables and colummsewér the keywords might occur be known.
This is often achieved by retrieving index tabldries. We tend to currently discuss the impact of
other index table styles on SQL generation.

Consider the order priority column within the Omldable in exceedingly 100 MB TPC-H info.
During this info, the Orders table has 150,000 ramsl order priority has five distinct values.
Whereas employing a Partial-index table, a hurd @rorth in o order priority will cause about 30,000
cells (i.e., 150,000, presumptuous uniform knowtedijstribution) being retrieved from a Partial-
index index table. To retrieve the matching rowQLSqueries can have to be compelled to be
generated that expressly talk over with the roveidpreciate the 30,000 cells known on top of from
the index table. In distinction, with a Partial-edtable we'll retrieve only 1 entry o order pripiithe
column name) and also the corresponding SQL hastthghtforward kind choose * from Orders
wherever Orders. O order priority =$keyword. Of ksmy Partial-index is effective given that info
indexes area unit out there for the revealed cotuferg., on order priority) in order that the gexted
SQL statements will be with efficiency dead.

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018. 1011

Horizontal... Sravanthi and Pemula

EASE OF MAINTENANCE

Maintenance of index tables as knowledge in datshamendment is a very important thought. For
insertions, Pub- pass is simpler to take care @hb®e it needs associate update providing the
insertions cause new values to be introduced irescotumn knowledge. In distinction, Partial-index
must be updated for each inserted row. Likewiseh eeleted row doesn't essentially cause associate
update in a very Partial-index table. Updates suaeasure handled in a very similar fashion. One
will use triggers or time stamps to update the x@ble with changes in underlying knowledge.

Summary: The Partial-index index table various is nearlyainably higher than the Partial-index
tabling, unless sure columns don't have indexegeireral, a hybrid index table is required wherever
the roughness is tied to the physical info desiigassociate index is on the market for a colume, w
have a tendency to publish the column contents Réttial-index roughness; otherwise we have a
tendency to publish it with Partial-index roughness

Finding Matches for Keyword Search:In this segment we discuss the search sectionamu fonly

on theexact match case. Let {K, K,,..., K} be the keywords particular in a query. Recallnfro
Section 3.1 that keyword explore has three stepthd first step, the symbol table is searched{usi
generated SQL) to recognize the database tabldésmes/cells that enclose at least one of the
keywords in the query. The next two steps are dhanhumerating join trees and recognize matching
rows that are described in detail below.

Enumerating Join Trees: This step is comparable for all index table graritiés. Let Matched
Tables be the set of information tables that cordaminimum of one among the question keywords.
If we tend to read the schema graph G as assalggtee a float graph, this step enumerates be part
of treesl, i.e., sub-trees of G such that: (a)lth®es belong to MatchedTables and (b) along, the
leaves contain all keywords of the question. Tlfuse tend to be part of the tables that occurmyri
part of tree, the ensuing relation can contairpatential rows having all keywords laid out in the
guestion. This vital step filters out an outsizediety of spurious be part of situations from being
passed on to the following step of the search.

We define our algorithmic rule for enumerating laet f trees. For simplicity of exposition, we tend
to assume G itself could be a tree. We tend t@lrptune G by repeatedly removing white leavdis, ti
all leaves square measure black (this resemblesea@oval traditionally, the term be part of tree
refers to the ordering of be part of operationseeined by the question optimizer for a given
guestion. we've full the term to confer with a softsubgraph (as outlined above) of the schema
wherever edges depict key foreign key relationshife ensuing tree is bound to contain all probably
matching be part of trees. Our next task is to esrate all qualifying sub-trees of , i.e., sub$ree
specified all keywords within the question occuroaigp the black nodes of the sub-tree. For
economical enumeration, we tend to adopt a hecsifbr selecting the primary node of the candidate
gualifying sub-trees as follows: we tend to pick tkeyword that happens within the fewest black
nodes of. we tend to currently do breadth-firstrearation of all sub-trees of G’ ranging from every
of the black nodes known on top of and checksfatqualifying sub-tree. Victimization this heuidst
significantly reduces the amount of trees enumdratiote that if we tend to cannot assume that G
could be a tree (i.e., if it contains cycles), l@tmf tree enumeration involves bi-connected part
decompositiotf of G, followed by the enumeration of be part @es on a probably cyclic schema
graph'” % We tend to omit any details as a result of lackause.

Searching for Rows: The input to the current final search step is thatenumerated be a part of
trees. Every be a part of tree is then mapped ¢oS§pL statement that joins the tables as per éee tr

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018. 1012

Horizontal... Sravanthi and Pemula

and selects those rows that contain all keywonaddatt, this is often the sole stage of the search
wherever the info table’s square measure acceBse Partial-index index table, the generated SQL
statement can have choice conditions on columnere®s for a Partial-index index table, the choice
conditions can involve rowids (and for a hybridléalihe choice condition can involve a mixture of
each variety of conditions). The execution potedepends on many factors, e.g., handiness of
column indexes for the Partial-index primarily béwsgproach. We have a tendency to observe that
there is also commonalities among the generated S@Qtements for a given keyword search
question, with potential applications of multi-quemprovement for more potency.

The retrieved rows square measure stratified bdfemeg output. Our approach is to rank the rows by
the amount of joins concerned (ties broken arliiggarthe reasoning being that joins involving
several tables square measure tougher to grasp.

This has parallels with bound ranking strategid&etl in document retrieval (e.g., documents duirin
which keywords occur near each other square meastuaified over documents during which
keywords square measure way apart). Since our gatioferule generates be a part of trees so as of
skyrocketing size (due to breadth initial enumergti be a part of tree enumeration step are often
pipelined and so followed straightaway by the S@ineration similar to the be a part of tree. We
summarize the steps of search in section 3.6.

ALGORITHM SEARCH

Inputs: A query consisting of keywords,Ko,..., K¢
Outputs: All database rows matching all keywords,
including rows derived by joining tables on the fly
/ISearch symbol table:

Look up symbol table S to determine the tablesjrools
Or cells containing query keywords

/[Enumerate join trees:

Compute G’ from G by ear removal operations
Enumerate join trees in G’

/[Search for rows:

For each join tree (in increasing size), construct

and execute SQL statement to retrieve matching rows

Supporting Generalized Matches:In this segment we discuss more general kinds givied
matches. Explicitly, we focus on the significanseaftoken matches where the keyword in the query
matches simply a token or sub-string of an attebwmbrth (for text string attributes, e.g., addresse
where we may wish to get back rows by specifyinly arstreet name).

Token Matches: As a straightforward example, think about inforroativith a table T as shown in
Table 4. Let the hash values of the searchablentoke., ‘string’, ‘ball’ and ‘round’ be one, twond
three severally (we ignore stop words like ‘thisS; etc.). Throughout commercial enterprise (fdir a
index table granularities) we have a tendency kenie every cell, hash and store every distinct
token beside applicable location info within theieas index tables.

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018.

Horizontal... Sravanthi and Pemula

Consider looking with a Partial-index index taldfea question keyword is ‘string’, this index table
tells United States that it happens in column TG a be part of tree that has T.C as a node, the
generated SQL can got to have clauses with subgtriedicates like wherever T.C LIKE ‘Y%string%’.
Since ancient B+ tree indexes can't be used faxirseks to take advantage of such predicates. As
alternate, most up-to-date industrial informatigrstems support full-text indexes that alter token
search in text columns (e.g., Microsoft SQL Sefi@d). If a full-text index is expel for column T,C

the generated SQL can have clauses like whereveNT®AINS(C, ‘string’), which may be
expeditiously dead. During this section, we haveralency to expel a unique technique that uses
some pre-computation however will perform tokenrcleas victimization B+ indexes that are
supported on all ancient SQL databases.

The search element for Tables remains an equivatentithin the precise match case (See Section 6)
basically, these index tables mimic a number of ftirectionalities of full-text indexes. However,
recall from Section four.1 that Tables is also msand will rival the scale of the informationats

We currently expel Hierarchical-Index, a way thathwefficiency allows token match capabilities by
exploiting obtainable ancient B+ tree indexes. stipported the subsequent crucial observation: B+
tree indexes is accustomed retrieve rows whosenithes a given prefix string. That is, clauses of
the shape wherever T.C LIKE ‘P%K%’ wherever P ig grefix string is with efficiency computed.
throughout business of a information, for each ke, we tend to detain the index table the entry
(hash(K), T.C, P) if there exists a string in cotuhC that (a) contains a token K, and (b) hasipref
P. as an example if we tend to publish the infoionatable shown in Table four, the ensuing Pub-
Prefix index table is shown in Table five (assumiegtend to hold on 2 character long prefixes).

Consider sorting out the keyword ‘ball’. Trying this keyword in Table four returns the prefixes ‘th
and ‘an’, and therefore the consequent SQL caragontauses like wherever (T.C LIKE ‘th%ball%’)
OR (T.C LIKE ‘an%ball%’). Such clauses are withigncy evaluated with ancient B+ tree indexes
(in the on top of example, rows three and five goeng to be retrieved from the database). Pub-
Prefix tables is compressed victimization the CPaBalgorithmic rule, except that rather than hash
prices we tend to use (hash value, prefix) pairs.

We expect the search performance of Hierarchicddxntechnique to be admire Partial-index
technique once the column breadth is tiny (e.gluroos like name and address that area unit
generally but a hundred characters). For columrth wirings of many hundred characters (e.g.,
product reviews) Partial-index will beat out Hiataical-Index considerably. The Hierarchical-Index
table size depends for the most part on the colkmowvledge and therefore the prefix length to store
in index table. a stimulating issue is determiratgsociate degree applicable prefix length. Becaus
the prefix length is inflated, its discriminatingilts (and index table size) will increase, andhinit
the limit the prefix techniqgue degenerates to tlaetifd-index technique. On the opposite hand,
because the prefix length is faded, its discrinimgaskills (and the index table size) decreased, an
within the limit the prefix technique degeneratestite Partial-index technique. We tend to judge
completely different prefix lengths through expegints in Section eight.4. Note that we will tune
Hierarchical-Index even any by permitting comphetifferent prefix lengths for various tokens. We
tend to area unit presently investigation theserestons in our style.

In summary, if a full-text index is offered, usebPunountain pass with the full-text index. Insteéd,
solely a standard index is offered and therefoeechlumn breadth is tiny, use Pub- Prefix, otheswis
use Partial-index.

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018. 1014

Horizontal... Sravanthi and Pemula

Other Generalized Matches: We area unit presently work the practicability ofplementing
different generalized match capabilities at intevaur system. Many of them seem to solely need
simple diversifications of corresponding technigtresn the knowledge retrieval domain. Permitting
matches with variants of question keywords (emn’and ‘running’) are often self-addressed by
commonplace data retrieval techniques like stemhiFige Partial-index primarily based technique is
unaffected by stemming, except that stemming idieghoefore storing keywords within the index
tables and to go looking keywords still. The Pudisgtable is a lot of sophisticated since to seauth

all variants of a keyword, they have to be expgesséntioned within the wherever clause of the
generated SQL for wanting up matching rows, e.@olitle = “cat” or Book.title = "cats”. For
many words in English, a definite disjunction iseof avoided by victimisation LIKE, e.g., Book.title
LIKE “cat%”. But, a general answer is a lot of cdiogted. For Hierarchical-Index, every came back
row can got to be stemmed to see if it containgjgtedle variations of the search keywords. we have
a tendency to area unit presently work the issfieslding a broader set of matching capabilitid |i
synonyms, fuzzy matches, and partitive (and aflgeaeral Boolean) keyword queries.

Experiments: We expel the results of an experimental analysth@fbusiness and search techniques
given during this paper (Partial-index and Hierarahindex). Specifically we tend to show that:

» Partial-index table is compact compared to Pairtidéx. Search performances for the 2
techniques area unit comparable once the quarftitpves designated by keywords is tiny.
Partial-index has superior performance once keysvardn't terribly selective.

» Partial-index scales linearly with knowledge siaed is freelance of information distribution,
each in business time and index table size. Sqadiormance scales with knowledge size
and variety of search keywords.

» Prefix-index table is compact compared to Partidex. Search performance of Hierarchical-
Index is considerably higher than Partial-index eofigll-text indexes aren't expel. for tiny
dimension columns (order of tens of charactergckeperformance of Hierarchical-Index is
adore Partial-index and Partial-index with fulltéxdexes.

Setup: The experiments area unit on a 450 rate 256 M8l IRtlll machine. We tend to used four
databases, 3 of that area unit from the computevank of Microsoft Corporation. The experiments
conducted on synthetic knowledgebase of sizes ondrid to five hundred MB.

Scalability: We evaluate the publishing and search performahtewtechniques: Partial-index and
Partial-index.

Search Performance: 2 workloads consisting of one hundred queriesgereerated. The amount of
keywords in an exceedingly given question is atdomm generated between one and five. The
keywords themselves are at random selected fronmttex table of the underlying info. We have a
tendency to denote the workloads consist of keya/itindt choose fewer than ten records and consist
of keywords that choose over one hundred recoidsré 1shows the typical end-to-end query time
(normalized with relation to Partial-index) for tharious techniques. We have a tendency to observe
that Partial-index and Hierarchical-Index have Emperformances. SQL generation time is sort of
constant for the 2 techniques, as only a few irtdble entries (needed for SQL generation) match the
keywords. SQL execution time is additionally vittyssame thanks to the presence of relevant info
indexes.

However Hierarchical-Index encompasses a supeeidopnance compared to Partial-index. We had
warm up SQL Server’s buffers with the index tabiehim the higher than experiments. but if we have

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018.

Horizontal... Sravanthi and Pemula

a tendency to begin from cold buffers, the looktupe will increase by another 2 hundredth for
Partial-index, because the larger index table cizgributes to additional 1/O. the rise is way deral
(about 5%) within the look-up time for Partial-indéf we've got multiple users accessing completely
different databases at the same time, having alesmiallex table will create a big distinction in
search performance.

SEARCH PERFORMANCE UNDER DIVERGENT LOADS
——+—-Hierarchicalindexer(Prefix-Index) = Partial-Index
-~ 08 -
2 07 - :
2 06 ==
5 05 ——
22 04 - L =
=5 03 - — E==—==
Sk~ . === *
2z 0.2 — =
22 01 =
g I:I T T T T T T T T T 1
=
2 £ L A L 2 o A £
) N} A N) 5) 3 Ly}
) %)) %)) %)) %)) &
oA o & & A0 & &
LoadinNumber of records

Fig.1: Query performance

This establishes that it is a improved strategyb@h publishing space and explore time) to use
Partial-index, especially when a few keywords migtattch a large number of rows in the databases.
It is significant to note that if column indexe® arot accessible, search performance of Partiaixind
can degrade rapidly. In that case, one should ag@Pindex for the columns.

CONCLUSION

We appraise the necessities and search perforntdindierarchical-lndex. We tend to compare it to
Partial-index, Partial-index with a full-text index expel on the informatioreferred to adartial-
index-FTS), andPartial-index with none full-text indexes expel. We tend to gate an employment
consisting of a hundred elect keywords from a paabty column of dimension sixty four bytes
within the computer memory unit information. Theod size of the information in this column was
twelve.5 MB. Figure 1 shows average search timenfabzed with relevanc®artial-index) once
prefix length is varied from two to sixteen. We daio observe that Hierarchical-Index provides the
most effective performance at prefix length eidfis can be as a result of because the prefix hengt
is inflated; the discriminating power of a prefixlivincrease and then will the amount of prefixes
related to a keyword. This induces further disjiorg within the later on generated SQL question.
Under an explicit limit, for such queries, the opier resorts to a scan of the underlying tableerat
than Associate index. So the common question eixectiime will increase. We tend to observe
similar behavior for a personality column of lendpity in USR, wherever the most effective prefix
length is vi. It's necessary to notice that therabter of the curve that we tend to get is gendhie;
particular optimum purpose depends on the undeylgotumn information.

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018.

Horizontal... Sravanthi and Pemula

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. Cunningham, G. Graefe, and C.A. Galindo-Legdfd)YOT and UNPIVOT: Optimization and
Execution Strategies in an RDBMS,"Proc. 13th I@dnf. Very Large Data Bases (VLDB ’'04), pp.
998-1009, 2004.

G. Luo, J.F. Naughton, C.J. Ellmann, and M. WatZkecking Protocols for Materialized Aggregate
Join Views,”"IEEE Trans. Knowledge and Data Eng.,1dl, no. 6, pp. 796-807, June 2005.

J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Hemgi and C. Kleinerman. .NET database
programmability and extensibility in Microsoft SQkerver. In Proc. ACM SIGMOD Conference,
pages 1087-1098,2008.

C. Ordonez. Data set preprocessing and transfamatia database system. Intelligent Data Analysis
(IDA), 15(4), 2011.

C. Ordonez and S. Pitchaimalai. Bayesian classifiogrammed in SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 22(1):1394,12010.

M. H. Graham, On the Universal Relation. TechnRReport, Univ. of Toronto, 1979.

C. Ordonez, “Horizontal Aggregations for Buildingfular Data Sets,” Proc. Ninth ACM SIGMOD
Workshop Data Mining and Knowledge Discovery (DMKI),pp. 35-42, 2004.

J. Gray, A. Bosworth, A. Layman, and H. PiraheshtaD cube: A relational aggregation operator
generalizing group-by, cross-tab and subtotalCRE Conference, pages 152— 159, 1996.

G. Luo, J.F. Naughton, C.J. Ellmann, and M. Watzkecking protocols for materialized aggregate
join views. IEEE Transactions on Knowledge andafamgineering (TKDE), 17(6):796-807, 2005.

T. Feder, R. Motwani, Clique partitions, Graph Coegsion and Speeding-Up Algorithms, STOC,
1991.

C. Ordonez and S. Pitchaimalai, “Bayesian Clagsifitro-grammed in SQL,”IEEE Trans. Knowledge
and Data Eng., vol. 22, no. 1, pp. 139-144, Jah020

C. Ordonez, “Data Set Preprocessing and Transfiwmah a Database System,”Intelligent Data
Analysis,vol. 15, no. 4, pp. 613-631, 2011.

H. Wang, C. Zaniolo, and C.R. Luo, “ATLAS: A Smalut Complete SQL Extension for Data Mining
and Data Streams,” Proc. 29th Int’l Conf. Very Laiata Bases (VLDB '03),pp. 1113-1116, 2003.

C. Ordonez, “Integrating K-Means Clustering withRelational DBMS Using SQL,”IEEE Trans.
Knowledge and Data Eng.,vol. 18, no. 2, pp. 188;Feb. 2006.

C. Ordonez, “Statistical Model Computation with UEJFEEE Trans. Knowledge and Data Eng.,vol.
22, no. 12, pp. 1752-1765, Dec. 2010.

C. Cunningham, G. Graefe, and C.A. Galindo-LegarRIVOT and UNPIVOT: Optimization and
execution strategies in an RDBMS. In Proc. VLDBh@&wence, pages 998-1009, 2004.

Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, Rblkert, A. Gupta, L. Sheng, and S.
Subramanian, “Spreadsheets in RDBMS for OLAP,"PAEM SIGMOD Int'| Conf. Management of
Data (SIGMOD '03),pp. 52-63, 2003.

E.F. Codd. Extending the database relational mmdelapture more meaning. ACM TODS, 4(4):397—
434, 1979.

Corresponding author: Arla.Sravanthi
Nimra Institute of Engineering & Technology, Ongofdndhra Pradesh, India.

JECET, September 2013 —November-2013; Vol.2.No.4)a7-1018. 1017

