
E-ISSN: 2278–179X

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

Journal of Environmental Science, Computer Science and

Engineering & Technology
An International Peer Review E-3 Journal of Sciences and Technology

Available online at www.jecet.org

Engineering & Technology

Research Article

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1007

Horizontal Aggregation with secondary indexes to
prepare datasets from databases

Arla.Sravanthi 1� and Rambabu Pemula 2

Nimra Institute of Engineering & Technology, Ongole, Andhra Pradesh, India.

Received: 6 September 2013; Revised: 18 September 2013; Accepted: 21 Septmber2013

Abstract: Internet search engines have popularized the keyword- based mostly
search paradigm. Whereas ancient management systems provide powerful
question languages, they are doing not enable keyword-based search. During this
paper, we tend to discuss Hierarchical Indexer, a system that permits keyword-
based mostly search in relative databases. Hierarchical Indexer has been enforced
employing an industrial on-line database and net server and permits users to act
via a browser front-end. We tend to define the challenges and discuss the
implementation of our system as well as results of intensive experimental analysis.

Keywords: Aggregation, data preparation, pivoting, SQL, Indexing

INTRODUCTION

Internet search engines have popularized keyword- based mostly search. Users submit keywords to
the computer program and a hierarchical list of documents is come to the user. Another to keyword
search is structured search wherever users direct their search by browsing classification hierarchies.
Each model is hugely valuable - success of each keyword search and therefore the classification
hierarchy is evident these days.

A significant quantity of the world’s enterprise knowledge resides in relative databases. It’s vital that
users be able to seamlessly search and browse info keep in these databases likewise. looking out

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1008

databases on internet the net} and computer network these days is primarily enabled by custom-made
web applications closely tied to the schema of the underlying databases, permitting users to direct
searches in a very structured manner.

While such structured searches over databases are not any doubt helpful, in contrast to the documents
world, there's very little support for keyword search over databases. Yet, such a quest model may be
extraordinarily powerful. As an example, we tend to might wish to search the Microsoft computer
network on ‘Jim Gray’ to get matched rows, i.e., rows within the information wherever ‘Jim Gray’
occur. Note that such matched rows could also be found in additional than one table, maybe even
from completely different databases (e.g., address book and mailing lists). Our goal is to alter such
searches while not essentially requiring the users to understand the schema of the individual
databases. Yet, today’s tailor-made internet applications as delineated on top of an ancient SQL
applications need information of the schema.

Enabling keyword search in databases that doesn't need information of the schema may be a difficult
task. Note that one cannot apply techniques from the documents world to databases during an easy
manner. As an example, because of information standardization, logical units of data could also be
fragmented and scattered across many physical tables. Given a collection of keywords, an identical
row may have to be obtained by change of integrity many tables on the fly. Secondly, the physical
information style (e.g., the supply of indexes on numerous information columns) has to be leveraged
for building compact knowledge structures vital for economical keyword search over relative
databases. During this paper we tend to describe Hierarchical Indexer, Associate in Nursing
economical and climbable keyword search utility for relative databases. The task of building
Hierarchical Indexer offers rise to many analysis queries that we tend to address during this paper.

Alternatives in index table Design: ancient info retrieval techniques for acceptable keyword search in
document collections use information structures like inverted lists1 that expeditiously establish
documents containing a question keyword. A simple mapping of this concept to databases may be a
index table that stores info at row level graininess, i.e., for every keyword we tend to keep the list of
rows that contains the keyword. Different index table styles are doable wherever we will leverage the
physical style of the info. For instance, if a column has Associate in Nursing index then we tend to
solely want column level graininess, i.e., for every keyword, we tend to solely store the list of
columns wherever they occur. The on top of approach may end up in immensely reduced area demand
and improved search performance. During this paper, we tend to study the trade-offs among these
varied alternatives.

Symbol Table Compaction: we tend to introduce a completely unique technique that leverages
commonality of keywords among info columns to compress index tables. This system is employed in
conjunction with hashing and different famous compression techniques.

Efficient Search across Multiple Tables: typically, the results of a question are matching rows that
span multiple tables. The rows have to be compelled to be generated by change of integrity tables on
the fly by exploiting the schema also as content of the database.

Efficient Generalized Matches exploitation SQL: once associate degree attribute worth could be a
string containing multiple keywords, retrieving rows wherever a keyword matches a substring (e.g.,
LIKE “%kwd%”) cannot exploit associate degree index operation on the attribute. In such cases, full
text search practicality is important for potency. We tend to show a completely unique various for
doing such matches exploitation SQL. We tend to explore the relevancy and limitations of our theme.

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1009

HierarchicalIndexer supports conjunctive keyword queries, i.e., retrieval of solely documents that
contain all question keywords. This is, in fact, the foremost wide used paradigm for net search.

We have enforced Hierarchical Indexer exploitation commercially accessible Microsoft SQL Server
2000 information server and Microsoft IIS net server. It communicates with databases exploitation the
quality ODBC interface, and therefore is often supported over just about any electronic database. Our
style ensured that Hierarchical Indexer leverages the practicality of the relative engine effectively.
Hierarchical Indexer is presently deployed on our company computer network, and a number of other
databases are enabled for keyword search exploitation this tool.

The rest of this paper is organized as follows. In Section three, we tend to expel a summary of
Hierarchical Indexer. Sections four and five describe the preprocessing part chargeable for making
the index table. Section six describes the search part that answers keyword searches once the index
table has been engineered. Section seven discusses extensions required for generalized keyword
matches represented higher than. Section eight presents experiments that demonstrate the
effectiveness of our answer.

RELATED WORK

 Keyword-based search may be a well studied downside within the world of text documents and web
search engines. Inverted lists area unit common knowledge structures used for finding keyword
queries1,2,3,4,5. A stimulating post search activity is that the ranking of results1,6. Our work differs from
canonical use of inverted lists as a result of we want to come up with hits among a info that span
multiple tables, as materializing all table joins and commercial enterprise every as a document (and
employing a text search engine) isn't a ascendible answer. This has ramifications for index table style
as are mentioned in Section 4.The approach in2 addresses the matter of keyword search over XML
documents. It parses XML documents to come up with and cargo inverted file info (i.e., a map of
values to individual rows) into a computer database. Our style provides another wherever index tables
map keywords to columns that have offered indexes. The add7 addresses the matter of proximity
search over semi-structured stores. In distinction, our core focus is on finding actual matches in an
exceedingly multi-relation info that contains all keywords per the question, requiring United States to
check style alternatives for index tables yet on develop techniques for be a part of tree enumeration.

The Telegraph FFF engine searches for facts and figures from chosen sites on the web, and permits
them to be combined and analyzed in advanced ways in which8. Since our work permits websites to
reveal their tabular info for sanctionative keyword search, the FFF search mechanism at the websites
that has facts and figures could also be increased by HierarchicalIndexer technology.

The search part of HierarchicalIndexer bears alikeness to figure on universal relations9, wherever a
info is viewed as one universal relation for querying functions, therefore concealment the quality of
schema standardization. The challenge within the universal relation approach is to map a variety
question over the universal relevancy a SQL question over the normalized schema. Though bound
aspects of our search algorithmic rule (such as be a part of trees, see Section half-dozen.1) area unit
almost like universal relations ideas (such as window functions, see9, a very important distinction is
that keyword searches ought to modify the extra quality that the names of columns within the choice
conditions aren't best-known. DataSpot10 may be a business system that supports keyword-based
searches by extracting the content of the info into a hyper base. Thus, this approach duplicates the
content of the info that makes knowledge integrity and maintenance tough. Microsoft’s English
question11 provides a linguistic communication interface to SQL info. However, in contrast to the

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1010

keyword-based approach, it “guesses” one SQL statement that most closely fits a question expressed
in an exceedingly linguistic communication.

Most major business info vendors permit a full text program12,13 to be invoked whereas process SQL
(that is extended by specialized predicates). However, such engines cannot by themselves establish
matching rows that result from connection multiple keep tables’ on-the-fly (see Section 6).

OVERVIEW OF HIERARCHICALINDEXER

Given a group of question keywords, HierarchicalIndexer returns all rows (either from single tables,
or by change of integrity tables connected by foreign-key joins) such the every row contains all
keywords. Such keyword search needs (a) a preprocessing step known as Publish that allows
databases for keyword search by building the index table and associated structures, and (b) a quest
step that gets matching rows from the printed databases. Though for lack of area, we tend to discuss
solely the case wherever there's one information, our techniques be keyword search over multiple
databases.

Overview of Publish and Search Steps: Publish: An info (or a desired a part of it) is enabled for
keyword search through the subsequent steps.

Step 1: A info is known, beside the set of tables and columns at intervals the info to be printed. Step
2: Auxiliary tables are created for supporting keyword searches. The foremost vital structure could be
an index table S that's used at search time to with efficiency confirm the locations of question
keywords within the info (i.e., the tables, columns, rows they occur in).

Search: Given a question consisting of a collection of keywords, it's answered as follows.

Step 1: The index table is researched to spot the tables, and columns/rows of the info that contain the
question keywords.

Step 2: All potential subsets of tables within the info that, if joined, would possibly contain rows
having all keywords, are known and enumerated. A set of tables are often joined given that they're
connected within the schema, i.e., there's a sub-tree (called a be a part of tree) within the schema
graph that contains these tables as nodes (and presumably some intermediate nodes).

Step 3: for every enumerated be a part of tree, a SQL statement is made (and executed) that joins the
tables within the tree and selects those rows that contain all keywords. The ultimate rows are graded
and conferred to the user14. the most Publish and Search elements are prepackaged as 2 separate
COM (Component Object Model15 objects. The publish element provides interfaces to (a) choose a
info, (b) choose tables/columns at intervals the info to publish, and (c) modify/remove/maintain the
publication. For a given set of keywords, the search element provides interfaces to (1) retrieve
matching databases from a collection of printed databases, and (2) by selection determine tables,
columns/rows that required being searched at intervals info known in step (1). the particular interfaces
for the latter embrace (i) for a given set of keywords, realize all the matching tables/columns, (ii) for a
given set of keywords, realize all rows within the info that contain all of the keywords.

Packaging these parts as COM objects permits them to be employed in a range of applications. This
model permits use of a customary applications programmer to publish any information at an internet
server. Similarly, for search, the user connects to the search ASP employing a browser and problems a
keyword-based question to induce matching rows. The system conjointly permits one to look multiple
databases at the same time. (See the appendix for screenshots of the system.)

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1011

 Design Alternatives for Symbol Table: Hierarchical Indexer has been deployed on real databases
from. In this section we tend to expel and analyze completely different the computer network at
intervals Microsoft. For its implementation, we tend to index table styles. We tend to solely take into
account the precise match leverage IIS internet server and Active Server Pages (ASP) problem; i.e.,
wherever every keyword within the question should match the worth of associate degree attribute in
a very row of a table. We tend to defer handling of additional generalized matches to Section seven.
The index table is that the key system won’t to hunt the various locations of question keywords within
the information. A very important style thought is deciding the placement roughness i.e., for a given
keyword, what info has to be hold on within the index table to spot the placement of the keyword
within the information. the 2 fascinating roughness levels are: (a) column level roughness (Partial-
index), wherever for each keyword the index table maintains the list of all information columns (i.e.,
list of table. column) that contain it, and (b) cell level roughness (Partial-index), wherever for each
keyword the index table maintains the list of information cells that contain it.

Some selections of the roughness levels aren't quite as fascinating. for instance, our experiments have
shown that row level roughness index tables (that maintain list of rows that contain a keyword) have
very little advantage over cell level roughness as so much because the size of the index table worries,
nevertheless bound functionalities (e.g., to “un”-publish a column, i.e., to prevent creating the column
offered for keyword search) are tougher to implement as a result of column info is absent. There are
many factors that influence the suitable roughness level to adopt: (a) area and time needs for building
the index table, (b) result on keyword search performance, and (c) simple index table maintenance.
We tend to discuss these factors next.

Space and Time Requirements: The index table size may be a crucial think about system
performance; larger index tables increase I/O prices throughout search. Partial-index index tables are
typically a lot of smaller than Tables. This is often as a result of not like the latter, if a keyword
happens multiple times during a column (corresponding to totally different rows), no additional data
must be recorded in Partial-index. Our experiments on take a look at databases show orders of
magnitude variations between the 2 index table sizes. The time to create Partial-index index table is
additionally correspondingly less, since not like Partial-index we tend to solely got to record the
distinct values during a column.

Keyword Search Performance: As are mentioned in Section vi, every keyword search question
leads to a collection of SQL statements, that area unit then dead to retrieve matching rows. Search
performance depends on the economical generation and resultant execution of those SQL statements.
SQL generation needs that the tables and columns wherever the keywords might occur be known.
This is often achieved by retrieving index table entries. We tend to currently discuss the impact of
other index table styles on SQL generation.

Consider the order priority column within the Orders table in exceedingly 100 MB TPC-H info.
During this info, the Orders table has 150,000 rows and order priority has five distinct values.
Whereas employing a Partial-index table, a hunt on a worth in o order priority will cause about 30,000
cells (i.e., 150,000, presumptuous uniform knowledge distribution) being retrieved from a Partial-
index index table. To retrieve the matching rows, SQL queries can have to be compelled to be
generated that expressly talk over with the rowids appreciate the 30,000 cells known on top of from
the index table. In distinction, with a Partial-index table we'll retrieve only 1 entry o order priority (the
column name) and also the corresponding SQL has the straightforward kind choose * from Orders
wherever Orders. O order priority =$keyword. Of course, Partial-index is effective given that info
indexes area unit out there for the revealed columns (e.g., on order priority) in order that the generated
SQL statements will be with efficiency dead.

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1012

EASE OF MAINTENANCE

Maintenance of index tables as knowledge in databases amendment is a very important thought. For
insertions, Pub- pass is simpler to take care of because it needs associate update providing the
insertions cause new values to be introduced in some column knowledge. In distinction, Partial-index
must be updated for each inserted row. Likewise, each deleted row doesn't essentially cause associate
update in a very Partial-index table. Updates square measure handled in a very similar fashion. One
will use triggers or time stamps to update the index table with changes in underlying knowledge.

Summary: The Partial-index index table various is nearly invariably higher than the Partial-index
tabling, unless sure columns don't have indexes. In general, a hybrid index table is required wherever
the roughness is tied to the physical info design: if associate index is on the market for a column, we
have a tendency to publish the column contents with Partial-index roughness; otherwise we have a
tendency to publish it with Partial-index roughness.

Finding Matches for Keyword Search: In this segment we discuss the search section and focus only
on the exact match case. Let {K1, K2,..., Kk} be the keywords particular in a query. Recall from
Section 3.1 that keyword explore has three steps. In the first step, the symbol table is searched (using
generated SQL) to recognize the database tables, columns/cells that enclose at least one of the
keywords in the query. The next two steps are that of enumerating join trees and recognize matching
rows that are described in detail below.

Enumerating Join Trees: This step is comparable for all index table granularities. Let Matched
Tables be the set of information tables that contain a minimum of one among the question keywords.
If we tend to read the schema graph G as associate degree a float graph, this step enumerates be part
of trees1, i.e., sub-trees of G such that: (a) the leaves belong to MatchedTables and (b) along, the
leaves contain all keywords of the question. Thus, if we tend to be part of the tables that occur during
part of tree, the ensuing relation can contain all potential rows having all keywords laid out in the
question. This vital step filters out an outsized variety of spurious be part of situations from being
passed on to the following step of the search.

We define our algorithmic rule for enumerating be part of trees. For simplicity of exposition, we tend
to assume G itself could be a tree. We tend to initial prune G by repeatedly removing white leaves, till
all leaves square measure black (this resembles ear removal traditionally, the term be part of tree
refers to the ordering of be part of operations determined by the question optimizer for a given
question. we've full the term to confer with a sort of subgraph (as outlined above) of the schema
wherever edges depict key foreign key relationship. The ensuing tree is bound to contain all probably
matching be part of trees. Our next task is to enumerate all qualifying sub-trees of , i.e., sub-trees
specified all keywords within the question occur among the black nodes of the sub-tree. For
economical enumeration, we tend to adopt a heuristics for selecting the primary node of the candidate
qualifying sub-trees as follows: we tend to pick the keyword that happens within the fewest black
nodes of. we tend to currently do breadth-first enumeration of all sub-trees of G’ ranging from every
of the black nodes known on top of and check if it's a qualifying sub-tree. Victimization this heuristic
significantly reduces the amount of trees enumerated. Note that if we tend to cannot assume that G
could be a tree (i.e., if it contains cycles), be part of tree enumeration involves bi-connected part
decomposition16 of G, followed by the enumeration of be part of trees on a probably cyclic schema
graph 17, 18. We tend to omit any details as a result of lack of house.

Searching for Rows: The input to the current final search step is that the enumerated be a part of
trees. Every be a part of tree is then mapped to one SQL statement that joins the tables as per the tree,

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1013

and selects those rows that contain all keywords. In fact, this is often the sole stage of the search
wherever the info table’s square measure accessed. For a Partial-index index table, the generated SQL
statement can have choice conditions on columns, whereas for a Partial-index index table, the choice
conditions can involve rowids (and for a hybrid table, the choice condition can involve a mixture of
each variety of conditions). The execution potency depends on many factors, e.g., handiness of
column indexes for the Partial-index primarily based approach. We have a tendency to observe that
there is also commonalities among the generated SQL statements for a given keyword search
question, with potential applications of multi-query improvement for more potency.

The retrieved rows square measure stratified before being output. Our approach is to rank the rows by
the amount of joins concerned (ties broken arbitrarily); the reasoning being that joins involving
several tables square measure tougher to grasp.

This has parallels with bound ranking strategies utilized in document retrieval (e.g., documents during
which keywords occur near each other square measure stratified over documents during which
keywords square measure way apart). Since our enumeration rule generates be a part of trees so as of
skyrocketing size (due to breadth initial enumeration), be a part of tree enumeration step are often
pipelined and so followed straightaway by the SQL generation similar to the be a part of tree. We
summarize the steps of search in section 3.6.

ALGORITHM SEARCH

Inputs: A query consisting of keywords Kb K2,..., Kk

Outputs: All database rows matching all keywords,

including rows derived by joining tables on the fly

//Search symbol table:

Look up symbol table S to determine the tables, columns

Or cells containing query keywords

//Enumerate join trees:

Compute G’ from G by ear removal operations

Enumerate join trees in G’

//Search for rows:

For each join tree (in increasing size), construct

and execute SQL statement to retrieve matching rows

Supporting Generalized Matches: In this segment we discuss more general kinds of keyword
matches. Explicitly, we focus on the significant case of token matches where the keyword in the query
matches simply a token or sub-string of an attribute worth (for text string attributes, e.g., addresses,
where we may wish to get back rows by specifying only a street name).

Token Matches: As a straightforward example, think about information with a table T as shown in
Table 4. Let the hash values of the searchable tokens i.e., ‘string’, ‘ball’ and ‘round’ be one, two and
three severally (we ignore stop words like ‘this”, ‘is’ etc.). Throughout commercial enterprise (for all
index table granularities) we have a tendency to tokenize every cell, hash and store every distinct
token beside applicable location info within the various index tables.

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1014

Consider looking with a Partial-index index table. If a question keyword is ‘string’, this index table
tells United States that it happens in column T.C. For a be part of tree that has T.C as a node, the
generated SQL can got to have clauses with substring predicates like wherever T.C LIKE ‘%string%’.
Since ancient B+ tree indexes can't be used for index seeks to take advantage of such predicates. As
alternate, most up-to-date industrial information systems support full-text indexes that alter token
search in text columns (e.g., Microsoft SQL Server [12]). If a full-text index is expel for column T.C,
the generated SQL can have clauses like wherever CONTAINS(C, ‘string’), which may be
expeditiously dead. During this section, we have a tendency to expel a unique technique that uses
some pre-computation however will perform token searches victimization B+ indexes that are
supported on all ancient SQL databases.

The search element for Tables remains an equivalent as within the precise match case (See Section 6)
basically, these index tables mimic a number of the functionalities of full-text indexes. However,
recall from Section four.1 that Tables is also massive and will rival the scale of the information itself.

We currently expel Hierarchical-Index, a way that with efficiency allows token match capabilities by
exploiting obtainable ancient B+ tree indexes. it's supported the subsequent crucial observation: B+
tree indexes is accustomed retrieve rows whose cell matches a given prefix string. That is, clauses of
the shape wherever T.C LIKE ‘P%K%’ wherever P is any prefix string is with efficiency computed.
throughout business of a information, for each keyword K, we tend to detain the index table the entry
(hash(K), T.C, P) if there exists a string in column T.C that (a) contains a token K, and (b) has prefix
P. as an example if we tend to publish the information table shown in Table four, the ensuing Pub-
Prefix index table is shown in Table five (assuming we tend to hold on 2 character long prefixes).

Consider sorting out the keyword ‘ball’. Trying up this keyword in Table four returns the prefixes ‘th’
and ‘an’, and therefore the consequent SQL can contain clauses like wherever (T.C LIKE ‘th%ball%’)
OR (T.C LIKE ‘an%ball%’). Such clauses are with efficiency evaluated with ancient B+ tree indexes
(in the on top of example, rows three and five are going to be retrieved from the database). Pub-
Prefix tables is compressed victimization the CP-Comp algorithmic rule, except that rather than hash
prices we tend to use (hash value, prefix) pairs.

We expect the search performance of Hierarchical-Index technique to be admire Partial-index
technique once the column breadth is tiny (e.g., columns like name and address that area unit
generally but a hundred characters). For columns with strings of many hundred characters (e.g.,
product reviews) Partial-index will beat out Hierarchical-Index considerably. The Hierarchical-Index
table size depends for the most part on the column knowledge and therefore the prefix length to store
in index table. a stimulating issue is determinative associate degree applicable prefix length. Because
the prefix length is inflated, its discriminating skills (and index table size) will increase, and within
the limit the prefix technique degenerates to the Partial-index technique. On the opposite hand,
because the prefix length is faded, its discriminating skills (and the index table size) decreases, and
within the limit the prefix technique degenerates to the Partial-index technique. We tend to judge
completely different prefix lengths through experiments in Section eight.4. Note that we will tune
Hierarchical-Index even any by permitting completely different prefix lengths for various tokens. We
tend to area unit presently investigation these extensions in our style.

In summary, if a full-text index is offered, use Pub- mountain pass with the full-text index. Instead, if
solely a standard index is offered and therefore the column breadth is tiny, use Pub- Prefix, otherwise
use Partial-index.

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1015

Other Generalized Matches: We area unit presently work the practicability of implementing
different generalized match capabilities at intervals our system. Many of them seem to solely need
simple diversifications of corresponding techniques from the knowledge retrieval domain. Permitting
matches with variants of question keywords (e.g., ‘run’ and ‘running’) are often self-addressed by
commonplace data retrieval techniques like stemming1. The Partial-index primarily based technique is
unaffected by stemming, except that stemming is applied before storing keywords within the index
tables and to go looking keywords still. The Pub- pass table is a lot of sophisticated since to search out
all variants of a keyword, they have to be expressly mentioned within the wherever clause of the
generated SQL for wanting up matching rows, e.g., Book.title = “cat” or Book.title = ”cats”. For
many words in English, a definite disjunction is often avoided by victimisation LIKE, e.g., Book.title
LIKE “cat%”. But, a general answer is a lot of complicated. For Hierarchical-Index, every came back
row can got to be stemmed to see if it contains acceptable variations of the search keywords. we have
a tendency to area unit presently work the issues of adding a broader set of matching capabilities, like
synonyms, fuzzy matches, and partitive (and a lot of general Boolean) keyword queries.

Experiments: We expel the results of an experimental analysis of the business and search techniques
given during this paper (Partial-index and Hierarchical-Index). Specifically we tend to show that:

• Partial-index table is compact compared to Partial-index. Search performances for the 2
techniques area unit comparable once the quantity of rows designated by keywords is tiny.
Partial-index has superior performance once keywords aren't terribly selective.

• Partial-index scales linearly with knowledge size, and is freelance of information distribution,
each in business time and index table size. Search performance scales with knowledge size
and variety of search keywords.

• Prefix-index table is compact compared to Partial-index. Search performance of Hierarchical-
Index is considerably higher than Partial-index once full-text indexes aren't expel. for tiny
dimension columns (order of tens of characters), search performance of Hierarchical-Index is
adore Partial-index and Partial-index with full-text indexes.

Setup: The experiments area unit on a 450 rate 256 MB Intel P-III machine. We tend to used four
databases, 3 of that area unit from the computer network of Microsoft Corporation. The experiments
conducted on synthetic knowledgebase of sizes one hundred to five hundred MB.

Scalability: We evaluate the publishing and search performance of two techniques: Partial-index and
Partial-index.

Search Performance: 2 workloads consisting of one hundred queries are generated. The amount of
keywords in an exceedingly given question is at random generated between one and five. The
keywords themselves are at random selected from the index table of the underlying info. We have a
tendency to denote the workloads consist of keywords that choose fewer than ten records and consist
of keywords that choose over one hundred records. Figure 1shows the typical end-to-end query time
(normalized with relation to Partial-index) for the various techniques. We have a tendency to observe
that Partial-index and Hierarchical-Index have similar performances. SQL generation time is sort of
constant for the 2 techniques, as only a few index table entries (needed for SQL generation) match the
keywords. SQL execution time is additionally virtually same thanks to the presence of relevant info
indexes.

However Hierarchical-Index encompasses a superior performance compared to Partial-index. We had
warm up SQL Server’s buffers with the index table within the higher than experiments. but if we have

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1016

a tendency to begin from cold buffers, the look-up time will increase by another 2 hundredth for
Partial-index, because the larger index table size contributes to additional I/O. the rise is way smaller
(about 5%) within the look-up time for Partial-index. If we've got multiple users accessing completely
different databases at the same time, having a smaller index table will create a big distinction in
search performance.

Fig.1: Query performance

This establishes that it is a improved strategy (in both publishing space and explore time) to use
Partial-index, especially when a few keywords might match a large number of rows in the databases.
It is significant to note that if column indexes are not accessible, search performance of Partial-index
can degrade rapidly. In that case, one should use Partial-index for the columns.

CONCLUSION

We appraise the necessities and search performance of Hierarchical-Index. We tend to compare it to
Partial-index, Partial-index with a full-text index expel on the information (referred to as Partial-
index-FTS), and Partial-index with none full-text indexes expel. We tend to generate an employment
consisting of a hundred elect keywords from a personality column of dimension sixty four bytes
within the computer memory unit information. The whole size of the information in this column was
twelve.5 MB. Figure 1 shows average search time (normalized with relevance Partial-index) once
prefix length is varied from two to sixteen. We tend to observe that Hierarchical-Index provides the
most effective performance at prefix length eight. This can be as a result of because the prefix length
is inflated; the discriminating power of a prefix will increase and then will the amount of prefixes
related to a keyword. This induces further disjunctions within the later on generated SQL question.
Under an explicit limit, for such queries, the optimizer resorts to a scan of the underlying table rather
than Associate index. So the common question execution time will increase. We tend to observe
similar behavior for a personality column of length forty in USR, wherever the most effective prefix
length is vi. It’s necessary to notice that the character of the curve that we tend to get is generic; the
particular optimum purpose depends on the underlying column information.

Horizontal... Sravanthi and Pemula.

JECET, September 2013 –November-2013; Vol.2.No.4, 1007-1018.

1017

REFERENCES

1. C. Cunningham, G. Graefe, and C.A. Galindo-Legaria, “PIVOT and UNPIVOT: Optimization and
Execution Strategies in an RDBMS,”Proc. 13th Int’l Conf. Very Large Data Bases (VLDB ’04), pp.
998-1009, 2004.

2. G. Luo, J.F. Naughton, C.J. Ellmann, and M. Watzke, “Locking Protocols for Materialized Aggregate
Join Views,”IEEE Trans. Knowledge and Data Eng.,vol. 17, no. 6, pp. 796-807, June 2005.

3. J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and C. Kleinerman. .NET database
programmability and extensibility in Microsoft SQL Server. In Proc. ACM SIGMOD Conference,
pages 1087–1098,2008.

4. C. Ordonez. Data set preprocessing and transformation in a database system. Intelligent Data Analysis
(IDA), 15(4), 2011.

5. C. Ordonez and S. Pitchaimalai. Bayesian classifiers programmed in SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 22(1):139–144, 2010.

6. M. H. Graham, On the Universal Relation. Technical Report, Univ. of Toronto, 1979.
7. C. Ordonez, “Horizontal Aggregations for Building Tabular Data Sets,” Proc. Ninth ACM SIGMOD

Workshop Data Mining and Knowledge Discovery (DMKD ’04),pp. 35-42, 2004.
8. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator

generalizing group-by, cross-tab and subtotal. In ICDE Conference, pages 152– 159, 1996.
9. G. Luo, J.F. Naughton, C.J. Ellmann, and M. Watzke. Locking protocols for materialized aggregate

join views. IEEE Transactions on Knowledge and Data Engineering (TKDE), 17(6):796–807, 2005.
10. T. Feder, R. Motwani, Clique partitions, Graph Compression and Speeding-Up Algorithms, STOC,

1991.
11. C. Ordonez and S. Pitchaimalai, “Bayesian Classifiers Pro-grammed in SQL,”IEEE Trans. Knowledge

and Data Eng., vol. 22, no. 1, pp. 139-144, Jan. 2010.
12. C. Ordonez, “Data Set Preprocessing and Transformation in a Database System,”Intelligent Data

Analysis,vol. 15, no. 4, pp. 613-631, 2011.
13. H. Wang, C. Zaniolo, and C.R. Luo, “ATLAS: A Small But Complete SQL Extension for Data Mining

and Data Streams,” Proc. 29th Int’l Conf. Very Large Data Bases (VLDB ’03),pp. 1113-1116, 2003.
14. C. Ordonez, “Integrating K-Means Clustering with a Relational DBMS Using SQL,”IEEE Trans.

Knowledge and Data Eng.,vol. 18, no. 2, pp. 188-201, Feb. 2006.
15. C. Ordonez, “Statistical Model Computation with UDFs,”IEEE Trans. Knowledge and Data Eng.,vol.

22, no. 12, pp. 1752-1765, Dec. 2010.
16. C. Cunningham, G. Graefe, and C.A. Galindo-Legaria. PIVOT and UNPIVOT: Optimization and

execution strategies in an RDBMS. In Proc. VLDB Conference, pages 998–1009, 2004.
17. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta, L. Sheng, and S.

Subramanian, “Spreadsheets in RDBMS for OLAP,”Proc. ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’03),pp. 52-63, 2003.

18. E.F. Codd. Extending the database relational model to capture more meaning. ACM TODS, 4(4):397–
434, 1979.

Corresponding author: Arla.Sravanthi

Nimra Institute of Engineering & Technology, Ongole, Andhra Pradesh, India.

