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Abstract:  In this paper, we propose singular value decomposition (SVD) 
algorithm with superliner-convergence rate, which is suitable for the beamforming 
mechanism in MIMO-OFDM channels with short coherent time, or short training 
sequence. The proposed superliner-convergence SVD (SL-SVD) algorithm has the 
following features: 1) superliner-convergence rate; 2) the ability of being extended 
smaller numbers of transmit and receive antennas; 3) being insensitive to dynamic 
range problems during the iterative process in hardware implementations; and 4) 
low computational cost. We verify the proposed design by using the VLSI 
implementation with CMOS 90 nm2 technology. The post-layout result of the 
design has the feature of 0.48core area and 18mW power consumption. Our design 
can achieve 7 M channel-matrices/s, and can be extended to deal with different 
transmit and receive antenna sets 

Key words: Beamforming, multiple-input multiple-output (MIMO)-orthogonal 
frequency division multiplexing (OFDM),precoding, singular value decomposition 
(SVD), superlinear. 

INTRODUCTION 

 The demand of high-throughput wireless transmissions, such as IEEE 802.11n WLAN systems and 
IEEE 802.16e WiMAX systems, continues to grow. The antenna arrays at both transmitter and 
receiver construct multiple-input multiple-output (MIMO) transceivers to enhance the data throughput 
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significantly. In MIMO orthogonal frequency division multiplexing (MIMO-OFDM) wireless 
systems, the data streams can be demultiplexed into several sub streams transmitted by different 
antennas to improve the bit-error-rate(BER) or throughput performance of the overall communication 
system by utilizing the transmit diversity. The singular value decomposition (SVD) of the channel 
matrix in MIMO-OFDM system is proved to be able to derive the singular vector matrix for optimum 
linear precoding and linear receivers.1 In modern MIMO-OFDM communication systems with high-
throughput requirement, such as IEEE 802.11n, the time interval of sending the precoding matrix to 
the transmitter is specified 2.  

In other words, the time for the SVD of one complex matrix is limited to about 400 ns. When the 
channels have short coherent time, the information derived by SVD should be sent from the receiver 
to the transmitter as soon as possible to keep the beam forming performance. The decomposing time 
and accuracy will therefore greatly affect the beam forming performance. 

The right singular vector matrix derived from the SVD results of the channel matrix is the optimal 
preceding matrix for linear detectors such as zero forcing (ZF) and minimum mean square error 
(MMSE) detectors3. There have been researches about the SVD algorithms for MIMO-OFDM 
applications. Traditional power iterative algorithm 4 can also be used to solve the SVD problem. 
However, it has only linear-convergence rate. It will be much slower when the channel matrix has 
multiple similar singular values. An algorithm of updating the singular vectors of the channel matrix 
by periodic pre- and post-multiplication by Jacobi rotation matrices was proposed in5 with high 
computational cost. In 6 the authors proposed an adaptive SVD algorithm with practical hardware 
implementations in 7 for MIMO applications without channel state information (CSI). Nevertheless, 
their convergence time requires hundreds of samples per channel matrix. The disadvantage of long 
convergence time is not suitable for MIMO channels with short coherent time or short training 
sequence. Another adaptive SVD beam-forming algorithm with perturbation theory was also proposed 
in8. Nevertheless, the computational cost is also high. The algorithm in with iterative division will 
apparently cause performance degradation in practical hardware implementations with severe 
quantization effect. 

 In9 a hardware efficient SVD algorithm VLSI architecture for steering matrix computation was 
proposed. It utilizes bi diagonalization, diagonalization, and Givens rotation to achieve high 
processing throughput. The resulting VLSI implements with 0.18micro m technology requires 3.3 
microsecond to complete the SVD of one complex matrix, which is still more than 8 times the critical 
requirement (i.e., 400 ns) in IEEE 802.11n systems. In addition, the algorithms mentioned above have 
only linear convergence speeds. Hence, these algorithms may not be suitable for the MIMO channels 
with short coherent time or short response time requirement with the specification in the MIMO 
OFDM systems.In this work, we propose a super linear-convergence SVD .(SL-SVD) algorithm and 
architecture with four features. 1) The property of super linear-convergence rate makes it at least 25 
times faster than the referenced works. 2) The ability of being extended to smaller numbers of 
transmits and receives antennas without hardware overhead. 3) The proposed SL-SVD is in sensitive 
to the dynamic range problems during the iterative process. Only 10-bit precision is required with the 
system simulation in the IEEE 802.11n systems. It leads to small area, short critical path, and over 
five time’s better-normalized area efficiency in VLSI implementations compared with related works. 
4) The comparison of the computational cost in Section IV shows the proposed SL-SVD to have at 
least 25%complexity reduction compared with other algorithms of 7 and 9. At last, we implement the 
hardware of the SL-SVD beam-forming algorithm in 90 nm technology. The chip has the feature of 
0.48core area and 18 mw power consumption. It not only achieves 7 M channel-matrices/s, 140 ns per 
matrix equivalently, which satisfies the critical specification of 400ns per matrix in the IEEE 802.11n 
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systems. In addition, the proposed SL-SVD design can also be extended to deal with different 
transmits and receives antenna sets. Besides, the post layout simulation is also verified by commercial 
electric design automation (EDA) tools. The paper organized as follows. The system model  described 
in Section II, and the details of the operation of the proposed SL-SVD algorithm are presented in 
Section III. The algorithm analysis described in Section IV. The simulation, architecture design, and 
VLSI implementation results presented in Sections V, VI, and VII, respectively. 

SYSTEM MODEL 

Consider a wireless MIMO-OFDM system in a frequencynonselective, slowly fading channel, 
respectively. Suppose Nr and Nt antennas are used at the transmitter and receiver. The equivalent 
channel model  given by  

                      r=Hs+n                                                        (1) 

H € CN
r
 X N

t  is the complex channel matrix with the(p,q)th element which is the random fading 
between the p th receive and q th transmit antennas    n € CN

r
 X 1    .is the additive noise source and is 

modeled as a zero-mean, circularly symmetric, complex Gaussian random vector with statistically 
independent elements. 

The p th element of   S € CN
r
 X 1   is the symbol trans mitted at the p th transmit antenna, and that of    r 

€ CN
r
 X 1     is the symbol received at the p th received antenna. 

After deriving the CSI, we can decompose the channel matrix in the SVD form as follows: 

 

 H=U∑VH                                                                                 (2) 

 

                  (3) 
 

U= [u1, u2,  ………..       uNr]                                            (4) 

V= [v1, v2,  .....……     vNt]                                               (5) 

U is an an Nr X Nt unitary matrix, V is an Nt X Nr unitary matrix,and.t=min(Nr,Nt).Ui’s and Vi’s are 
the corresponding left and right singular vectors.∑ is an Nt X Nr matrix with only nonnegative main 
diagonal entries which are the nonnegative square roots of the eigenvalues of HHH, and (.)H denotes 
the Hermitian operation. In (2), the diagonal matrix ∑ is unique for a given channel matrix while the 
unitary matrices U and V are not unique matrices. By substituting the SVD results for the matrix H, 
(1) becomes 

 r= U∑VH
S+n                                                                    (6) 

Multiplying UH 

On both sides, (6) can be rewritten as 

    r′=∑s′+n′                                                                        (7) 

 Where r′=UHr and s′=VHs,and n′=UHn distribution of n′ , is invariant under unitary transformation. It 
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means that the multiplication of the AWGN by a unitary matrix does not cause any noise 
enhancement. The multiantenna channel is equivalent to min (Nt, Nr) independent parallel Gaussian 
sub channels at most. Each sub channel has a gain, which is the singular value of the channel                  
matrix H. 

THE PROPOSED SL-SVD ALGORITHM 

Our goal is to develop an iterative SVD algorithm with high convergence rate with acceptable 
computational cost. Most it erective SVD algorithms try to reduce the computational cost in each 
iteration; however the number of required iteration times is enlarged. If we can greatly reduce the 
entire computation time by increasing moderate computational cost in each iteration, the overall 
computational cost which can be lowered with even higher convergence rate. The proposed SL-SVD 
has the property of super linear-convergence rate and the detailed procedures are described in the 
following subsections. 

A. Initial Stage and Iterative Process:  

To handle MIMO-OFDM channels with short coherent time or short training sequence, we propose a 
super linear convergence SVD (SL-SVD) algorithm for closed-loop beam forming. From (2), the 
results of the SVD process consist of singular values and singular vectors. The main idea of the 
proposed SL-SVD algorithm is to derive the singular vectors prior to singular values. Deriving 
singular vectors first has a significant advantage that we only have to care about the direction of the 
singular vector but not the norm. 

In the proposed SL-SVD algorithm, we do not compute the decomposition directly. Instead, we derive 
the direction of the right singular vectors by iterative computation. The convergence rate is enhanced 
by using the matrix multiplications iteratively. At the same time, we apply the proposed adaptive 
binary shift mechanism to prevent the growth of the dynamic range during the iterative multiplication. 
Unlike the traditional power iteration method 4, adaptive method 8 and 6, this work provides higher 
convergence rate of deriving the results of SVD, and needs only 10-bit precision for the variables 
during the iterative computation in our simulations in Section V. 

To simplify the SVD problem from three unknown matrices, U, ∑, and V , to two unknown matrices, 
we firstly define the initial matrix P1(0) 

   P1
(0)=k1,0. H

HH=K1 ,0V∑
2VH=K1,0∑

N
t  vivi

H                    (8) 

                                                   i=1 

Pi(n)and Ki,n the updating matrix and arbitrary non zero coefficients after the n th iteration of the 
proposed algorithm for deriving the th singular vector Vi . The value of the maximum iteration 
number,n , can be defined in advance. We only have to solve two unknown matrices ∑ and v   
 

Summation property     : ∑i=1 
N

t v�ivi
H=INt                          (9) 

 Orthogonal property: v�i
H vj= 0, A i  ≠ j                              (10) 

 Where INt is an Nt x Nt identity matrix  

C. Left Singular Vector and Singular Value Matrix Derivation:  

After the matrix V� is derived ,we multiply the channel matrix H with V� 

   T=HV�= [Hv1   Hv�2 …  Hv�Nt] 
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    = (U∑VH
)V�=U�∑�=U∑                                          (11) 

  Equivalently, the column vector of T, Hv, can be obtained after deriving each vi..The estimated 
singular values and left singular n be derived as 

                                             (12) 

Where U� and ∑� are the estimated matrix of singular values and the estimated  left singular vectors 
respectively. . By computing the norm of each column in H. Vand normalizing the column vectors, 

we then derive ∑� and U� without any iterative multiplication.  

Note that the main computations and storage needed are related to the matrix V� only small word 

length required in the iterative multiplication due to the proposed adaptive binary shift mechanism so 

as to reduce the critical path and the hard ware needed at the same time. The computation of ∑� and 

U� requires no iterative process and is outside the loop, which indicates we can use greater 

wordlength to store the values of ∑� and U� for higher overall accuracy without increasing much 
hard ware overhead or lengthening the critical path. 

 D. Orthogonality Reconstruction (OR):  

 In practical hardware implementations, all the elements will be expressed in finite precision. The 
orthogonal property among singular vectors, column vectors of U and V will be corrupted and induce 
the interferences among transmitted substreams. We will then propose an operation called OR to 
preserve the most orthogonality. Applying SVD to the channel matrix H, we can learn that 

∑=UHHV                                                                           (13) 

The corruption   property among singular vectors will cause nonzero value of off-diagonal entry of 
diagonal matrix∑. Such nonzero off-diagonal entries will cause interfereence among each antenna and 
inaccurate singular values which bring BER degradation. The corruption of orthogonal property 
among singular vectors should be carefully handled. However,in fixed point design, this property is 
corrupted by quantization error and inaccurate deflation due to the finite precision. Especially, error 
propagation induced by deflation stage may cause a fatal error to orthogonal property among singular 
vectors. Take two singular vectors as an example 

V�
H
V�j=e, i≠j                                                                  (14) 

 Where V�i and V�j are two orthogonal singular vectors. If V�I   and V�j   have perfect orthogonal 

property, € should be equal to zero. If the orthogonal property of V�i and V�j are destroyed by 
quantization error, the value of is near to the accuracy which fixed point can represent. However, error 
propagation induced by deflation stage may lead € become hundreds times of system accuracy. 

The destruction of orthogonal property among singular vectors caused by quantization error may not 
be prevented. However, we can use orthogonality reconstruction for fixed point opera tion to 
eliminate the destruction caused by deflation stage and improve the performance. 

 For orthogonality reconstruction, first we consider the data flow in Fig. 1. Notice that V�1 
corresponding to the greatest singular value does not suffer from the errors caused by the deflation 
operation. While Ui’s, for all i>1 eliminate the inaccurate remaining part on previously derived 

singular vectors by applying Gram-Schmidt process respect to V�1~Vi-1. The operation can be 
expressed as 
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q�1=v�1                                                                            (15) 

i-1 q�i=v�i =∑    (v�
H

oc,k v�i  ) v�oc,k   ,  for i>=2 ,         (16) 

v�oc,I =q�I  / (� q�i�2)                                                     (17) 

After applying orthogonality reconstruction to all column vectors of V, the most interference caused 
by inaccurate deflation process can be avoided. In most cases 

�q�i�2  �    1                                                                   (18) 

E. Algorithm Flow and the Architecture: 

 Fig. 1 shows the flow chart of the proposed SL-SVD algorithm in this paper. The detailed steps will 
be listed as follows, 

Step- 1: Given the complex channel matrix H. 

Step-2: Derive the updating matrix Pk(0)  of the right singular  vector corresponding K th singular 
value and perform the matrix multiplication. 

Step-3: Use adaptive binary shift to approach the desired singular vector under the constraint of 
wordlength precision.  

Step- 4: Check if the set maximum iteration number (chosen  to be 4 for the worst case of 4X 4 
matrices according  to the simulation results in Section V) is reached   or not. Go back to Step 3 if the 
condition is not   satisfied, or else go to Step 5. 

Step-5: Perform the deflation operation. 

Step- 6: Check if all singular vectors are solved or not. If not, go to Step 2, otherwise perform OR 
operation and go to  

Step- 7: (For a 4 4 matrix, only 3 OR operation is Step 7) Derive the results of U, ∑, V. 

 

 

 

Fig.1: The flowchart of the proposed super linear-convergence SVD algorithm 

ARCHITECTURE DESIGN 

 The overall architecture of the hardware design is shown in Fig.2 It is mainly composed of four parts: 
1) matrix array multiplication for iterative multiplication and deflation; 2) matrix-vector multiplier for 
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orthogonal reconstruction;3) pipelined vector normalization for deriving singular values and vectors; 
and 4) specific control circuits and storages of right singular vectors before or after OR operation. We 
can derive the desired singular values, left, and right singular vectors after the proposed iterative 
processing.  In Fig.3 (a), the matrix-matrix multipliers are designed for the matrix multiplication. The 
inputs are two matrices and the output is an upper triangular matrix due to its Hermitian property so 
that the iterative multiplication cost can be reduced by half without performance degradation. For 
ancomplex are required in the matrix-matrix multiplication block. In addition to the iterative 
multiplication, the deflation operation can also be executed.With these multipliers. The function of 
A.B.S is designed to solve the problem of the exponentially growing values in the matrix during 
iterative multiplication. As shown in (19), a delicate binary shift is applied to the whole matrix after 
each iteration according to the magnitudes of the diagonal elements. The A.B.S. block is simplifiedto 
be multiplexers and XOR gates only In Fig.3 (b), the matrix-vector multipliers can be utilized in the 
phase of orthogonal reconstruction by Gram-Schmidt process and computation of. As described, two 
cycles are required to obtain the results of OR operation. In Fig.3 (c), the pipelined vector 
normalization can be decomposed to be: square of the vector 2-norm, inverse square root, square root, 
and vector scaling. The digit-by-digit calculation and digit recurrence algorithm in are adopted for 
implementing the square root and inverse square root operations, respectively. This block can be used 
to obtain the normalized left and right singular vectors. The singular values can also be derived with 
the square root function. 

The straightforward implementations of inverse square root and square root functions are applied in 
our design, and the equivalent gate counts are about 9 and 0.8 k, respectively. These two function 
blocks are hardware expensive and occupy about 6% area over the entire design. Although straight  

Implementations for inverse square root and square root functions are employed in this work, the 
CORDIC operation is feasible to mitigate the cost of the square root function. The storages of left 
singular vectors before or after OR operation is shown in Fig. 3(d). With dedicate task arrangement, 
the storages of the right singular vectors can be outputted for OR operation or computation. The fine 
tuned results of right singular vectors can also be stored after OR operation 

 

 

 
 

Fig 2: The architecture of the proposed SL-SVD algorithm 
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The post layout analysis of the proposed SL-SVD engine is obtained by using Verilog HDL codes 
synthesized with the standard cell library of UMC 90 nm 1P9M Low-K process in a core size 0.48at 
182–MHz operating frequency. The power consumption is evaluated with Synopsys Prime Power in 
4X 4-antenna mode. To meet the specification of IEEE 802.11n standard, the proposed SL-SVD 
engine can support 16 antenna modes.    For the application to IEEE 802.11n standard, we use the 
SVD engine to serially decompose all the channel matrices all subcarriers. Chip results show that the 
latency of our SL-SVD engine for 128-subcarrier MIMO-OFDM system is about 0.3% of WLAN 
coherence time14 to prevent time-varying channel. 

 The SVD of one complex channel matrix owing to the super linear-convergence property of proposed 
SL-SVD. In successive matrix processing, the equivalent processing time required for each matrix can 
even be reduced to 90 ns. The normalized area efficiency is five times better than the referenced 
works due to the properties of low computational cost and insensitivity to the dynamic range problem. 
The prototype design can be also extended to different antenna sets. 

We need only few numbers of iteration to complete SVD process due to the property of super linear-
convergence rate of the proposed SL-SVD. The SL-SVD is division-free and only multiplication 
operation is introduced in each iteration. The A.B.S. and orthogonality reconstruction (OR) are also 
utilized for updating and vector correction, so that we can use only 10-bit precision in our design. 
That is why our design is area and power efficient 

 

   

  
 

Fig. 3: (a) Matrix-matrix multiplication and A.B.S. (b) Matrix-vector multiplication. (c) Pipelined 
vector normalization. (d) Storages of right singular vectors 
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SIMULATION RESULTS 

 The validity of the proposed MIMO channel estimation algorithm is investigated via Matlab™ 
simulations. 

Figure 4 and Figure 5 show the MSE simulation results for the transmitted signal and their response in 
complex format. 
 

 

 

 

Fig .4: Transmission based signal generation and modulation approach 
where the signal is generated while carrier signal is obtained for 

modulation. 
 
 

 

 
 

 
 

Fig. 5: Channel estimation with accuracy as the result represent theoretical 
and estimated result .The signal is mapped with the expected output and graph 

is show the variation in the outcomes 
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Fig. 6: Channel estimation using Quantization based   approach  algorithm and its 

Approximation result.The symbol rate defines the performance of the system that can 
be used to define efficiency 

 

 
 

Fig. 7: Channel Spectrum allocation in dynamic Mode Approximation result. The 
graph shows the spectrum allocation of the system with continuous signal 

generation mechanism. 
 
 

 

 
Fig 8: Channel receiver Plot with defined Real coefficient result.The 

symbol prediction accuracy is specified along the Inphase signal and the 
vibrational result 
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From the results shown in Figure 8, it is apparent that the signal transmitted as information is properly 
estimated and obtained 

CONCLUSION 

 In this paper, we propose a super linear-convergence rate SVD algorithm. The algorithm can obtain 
the SVD results of the complex MIMO-OFDM channel matrices about 25 times faster than other 
referenced algorithms. The super linear-convergence speed makes this algorithm suitable for the 
channels with short coherent time. Moreover, the SL-SVD engine can be extended to decompose their 
smaller channel matrices with little hardware overhead. The total computational cost is low owing to 
the super linear-convergence rate. A hardware implementation with 90 nm technology is also 
presented. The chip has the feature of 0.48core area, 18 mw power consumption, being able to 
handling 7 M-channel-matrices/s, and can be extended to deal with different transmit and receive 
antenna sets. 
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